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THE DETERMINATION OF THE MICROSCOPIC 
DENSITY IN LIQUIDS AND OTHER 
DISORDERED MATERIALS USING 

REVERSE MONTE CARL0 SIMULATION 

ORSOLYA GEREBEN and LASZLO PUSZTAI 

Luhorutory of Theoretical Chemistry, L .  Eiitviis University, 
Budupest 112, POB 32, H-1518, Hungury 

(Rewirrrd 30 ScJptemhcr 1995)  

A procdure using the Reverse Monte Carlo technique was shown to find the correct microscopic density 
of scattering centers (atoms, ions, etc.) in a model liquid within about 2%- on the sole basis of diffraction 
data. The method was also tested on solid amorphous systems of low, as well as  of high packing fractions. 
An amorphous tetrahedral network served as a model for the former, while for the latter a model of a 
metallic glass was used. 

KEYWORDS: Diffraction data, amorphous materials, backing fraction. 

1. INTRODUCTION 

The precise knowledge of the microscopic density of scattering centres ~ atoms, ions, 
atoms of molecules, etc. -, eo, in materials is of primary importance. The need for the 
correct values is especially expreessed in any kind of evaluation of diffraction data. 
Using the traditional data reduction, partial coordination numbers, which are the 
ultimate information in this case, are proportional to eo. On the other hand, it is 
impossible to build reliable structural models if  wrong densities are applied. 

There are many examples of liquid alloys where mixing of the components gives 
rise to a volume contraction (and, therefore, increasing density) that cannot be 
calculated correctly. Moreover, since these alloys are frequently highly corrosive, 
direct measurement of the density cannot be carried out easily. 

The problem can also be extremely severe if the values of the average coordina- 
tion number have extreme impact on the basic conclusions of a study. The best 
known example of such a case is that of the amorphous semiconductors, a-C, a-Si 
and a-Ge. Perhaps the most problematic is the case of thin films, where traditional 
methods are totally unfeasible. 

Traditional (macroscopic) density measurements cannot usually be used for the 
determination of eo, since they simply give an m/V ratio of the whole sample (where 
m is the mass, V is the macroscopic volume of the sample). This ratio cannot count 
for voids that are much larger than the particles, and therefore the separation of 
particles may be predicted to be larger than the real distance between scattering 
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160 0. GEREBEN AND L. PUSZTAI 

centres. (Also, a sometimes the volume of the sample is so small that the m/V ratio 
can only be measured with high uncertainities). 

It is in principle possible to derive eo from the initial slope of the so called 
reduced radial distribution function (rrdf), G(r)' .  

Q(S(Q)- l)sin(Qr)dQ 

and 

where S(Q) is the structure factor and g ( r )  is the pair correlation function (pcf). 
Within the excluded volume region C(r)  should be a straight line with a slope of 
- 4 1 1 ~ ~ .  However, most of the errors of the direct Fourier transform accumulate in 
the same region. This problem makes the method no better than measuring m / V .  
This is why in earlier studies (see eg. Ref. 7) some rather ad hoc prediction of eo were 
given, instead of using purely the above procedure. 

It was noticed earlier2 that it was not possible to fit experimental total pcf's by the 
Reverse Monte Carlo (RMC) technique3 if wrong values for the density were used. 
This observation served as a starting point for the present study. It aims to explore 
the behaviour of the Reverse Monte Carlo technique if incorrect values of eo are 
applied, using structure factors, as well as pcf's and rrdf's for dilute, and also, for 
dense model systems. On the basis of the experience to be gained from this survey 
we wish to propose that correct eo values can be obtained by means of series of 
RMC simulations, in cases of good quality data. Note that to first order (for low 
absorption samples) in a neutron scattering experiment the structure factor is inde- 
pendent of density used for corrections (which is closely related to the macroscopic, 
m / V  density of the sample). 

2. REVERSE MONTE CARL0 

The basic RMC algorithm has been described elsewhere in detail3- 5 ,  therefore only 
the relevant parts are mentioned here. 

RMC moves particles around randomly in the simulation box in order to repro- 
duce a given set of diffraction data within the experimental uncertainities. In doing 
so, a quantity called x 2  is calculated for each attempted move: 

where X can be g, G or S and y can stand for r or Q. n p  is the number of data points, 
o is related to the-assumed-experimental error. During the RMC calculation x 2  
decreases gradually until its value oscillates around an 'equilibrium' value. This 
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value is bound to a given a value. Therefore it is important that if a comparison is 
made between two RMC fits (see below) then it can only be made properly if the 
value of a was the same for both runs. 

3. DESCRIPTION OF THE PROCEDURE LEADING TO eo 

The number density is an input parameter of RMC. Changing the input e, the 
equilibrium value of x 2  (for a given a) also changes. It was assumed that x 2  has its 
minimum value if the correct eo is put in. 

In order to check this assumption series of RMC calculations were carried out for 
fixed sets of data, with different input eo values. The initial @: could usually be the 
latest value reported in the literature, and one lower and one higher value (by about 
10 percents) were tried simultaneously. This meant at least 3 calculations per data 
set. From these three calculations it  should be possible to establish a trend towards 
the correct microscopic density of scattering centres, provided that the above 
assumption is right. 

In this work only model data sets corresponding to known eo’s were applied. For 
establishing the correctness available by such a ‘brute force’ type method some 
calculation series applied a very fine eo grid around the correct value. The reliability 
could then be estimated by comparing the correct eo with the closest (to the correct) 
eo value to which significantly larger x 2  corresponded than to the correct (and 
known) number density. 

4. CALCULATION DETAILS AND RESULTS 

In order to assure the highest level of objectivity, the starting configuration and the 
length of the calculations were identical in each simulation for a particular data. For 
picking the right type of data, g( r ) ,  G( r )  and also S( Q)  have been modelled. Since i t  
was assumed that the most direct data would be the most appropriate choice, the 
structure factor case was investigated for all the three of our model systems. 

The first data set, representing a model simple liquid, was the best RMC fit to the 
structure factor of liquid gallium‘. The number density of the model was 0.0525 k3, 
corresponding to a packing fraction of about 0.33. The second data set was the best 
RMC fit to the structure factor of Etherington et al.,’ for a-Ge. For the g ( r )  case the 
corresponding pcf, given also by RMC, was applied. In order to test our approach 
under very different conditions we chose the best RMC fit to the three total coherent 
scattering functions, F ( Q ) ,  of Ni,,Nb,, metallic glass’ to be the third model data 
set. The corresponding partial pcf‘s provided by RMC served as input for the test 
calculations at q( r )  level. In this way, two rather different packing fraction values 
(0.344 and 0.841 (!), with eo of 0.043 and 0.071 A-3 ,  respectively) were tried o u t  for 
the amorphous materials. 

The models are discussed separately, and later on the application of different 
input functions ( ~ ( r ) ,  G ( r )  and S( Q) )  is compared. The main tool for presenting 
results will be graphs that show x2’s as functions of the input Q(). The reason for this 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
1
3
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



162 0. GEREBEN AND L. PUSZTAI 

choice - apart from the desire for quantification - is that looking at RMC fits only 
does not reveal small differences in the quality of the fits. 

A.  The Case of Model Liquid Ga 

The correct number density of the model was 0 .0525k3 .  In each calculation sys- 
tems of N = 1728 particles were used, for modelling g(r) ,  G ( r )  and also S ( Q ) .  The 
calculations last for 550000,56000 and 500000 accepted moves, respectively. Each 
simulation was started from an FCC lattice. The CT parameter was kept at 0.005 in 
each calculation. 

Figure 1 gives X 2 - Q o  curves for all the three series of RMC simulations. It is clear 
that, similarily to the amorphous models to be shown later, applying the structure 
factor provides an estimate of the correct number density within about 1-2%. 
Applying g ( r )  leads to an incorrect estimate, although this model of a simple liquid 
behaves much better in this respect than more complicated structures. 

It is also evident (though on the basis of a smaller calculation series, as modelling 
G(r)  went considerably slower than modelling S(Q) or g(r)) that modelling the reduc- 
ed radial distribution function, G(r),  also provides a sensible estimate on the correct 
Qo, within about 2-4% (see Fig. 1). This clearly shows that the differences stemming 
from the application of different experimental information cannot be attributed simply 
to the different ( r  and Q) spaces where these functions are interpreted. Instead, the 
difference between data sets can be made upon the basis of that if they contain the 
number density explicitly, such as S ( Q )  and C(r ) ,  or do not, such as g(r). 

B. The Case of Model a-Ge 

The use of N = 1728 particles with, the model number density eo = 0.043 k3 result- 
ed in a boxlength, L, of about 30A. This system size proved sufficient for modelling 

30 + 
i 2  

1 0  
0.047 0.048 0.049 0.05 0.051 0.052 0.053 0.054 0.055 0.056 

Number danslty (A4) 

Figure 1 Minimum xz’s as a function of the number density of scattering centres for the model of liquid 
Cia. The modelling was carried out in r space, using g(r )  (open triangles) and G(r)  (asterisks), as well as in 
Q space (full squares) using the structure factor. Note that here using y(r) underestimates the correct 
density to a lesser extent than for the other models studied. 
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in r ,  as well as in Q space. The CT parameter in all the calculations was 0.005 
(corresponding roughly to an assumed 0.5% of experimental uncertainity). In each 
calculation, 400000 accepted moves were completed, starting from the same initial 
configuration (which was a diamond lattice). In order to avoid unphysical configur- 
ations swiftly, a minimum value for the closest approach between particles, A, was 
applied. Throughout these computations A was kept constantly at 2 1, which corre- 
lates to the experimental ‘contact’ value. 

Figure2 gives the x2-eo curve for the model a-Ge system where the structure 
factor, S(Q), was used as input for RMC. The minimum is found at the correct value 
of the number density of scattering centres, Qo = 0.043 A-3, although the two closest 
densities worked with similar x2. This means that the uncertainity of the procedure 
in this case can be estimated tq be about max. 2%. (Since the closest values of eo 
applied were 0.042 and 0.044A-3.) As i t  is evident from Figure 3, the RMC fits 
cannot easily be distinguished from each other, although the corresponding average 
coordination numbers are characteristically different (see Fig. 2). 

The x2-eo curve for the model a-Ge system where the pair correlation function, 
g ( r ) ,  was modelled is shown in Figure 4. Where the number density is higher than 
the correct value, the curve behaves like in the S(Q) case, i.e. the fits are clearly 
poorer than the one where the correct eo was used. However, when number den- 
sities that are smaller than the correct value are used, the oquality of RMC fits even 
improves slightly, until eo gets smaller than about 0.02A-3. At first glance, this 
looks rather disappointing. But one should bear in mind that this kind of behaviour 
could be expected u pr ior i -  if the atoms have more freedom to move around then it 
is naturally easier to obey more complicated constraints. (This is why the results for 
the Q space modelling are noteworthy in themselves). The number density of 
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0.050 

Number density [A**( -3)l 
Figure2 Minimum 1 ” s  as a function of the number density of scattering centres for the model of 
amorphous germanium. The modelling was carried out in Q space. Note the well defined minimum at the 
correct number density. The corresponding average first coordination numbers are also indicated. Filled 
triangles: x 2 :  asterisks: ii. 
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164 0. GEREBEN AND L. PUSZTAI 

Figure3 RMC fits to the structure factor of model a-Ge. Heavy solid line: original (QO =0.043 k3); 
heavy dots: RMC fit with e, =0.043 k3; solid: RMC fit with e0=0.038 k3, dots: RMC fit with 
e, = 0.048 k3. 

0 . 0 2 k 3  means half of the correct packing fraction (using the same atomic size). 
Until this value the more freedom gained by the smaller number density could not 
be offset by the more complicated constraint imposed by the data with an incorrect 
eo. The apparent difference between using structure factors and pcf's should also be 
noted: the S (  Q)  inherently contains the number density, whereas it  is necessary to 
assume a value for Qo for obtaining g ( r ) .  This might serve as an explanation why 
modelling in Q space provides different (better) evidence. 
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Figure4 Minimum x2's as a function of the number density of scattering centres for the model of  
amorphous germanium. The modelling was carried out i n  r space. Note that densities highel- than the 
correct value result in  poorer agreement, but lower number densiy values can lead to slightly better lits. 
The corresponding average first coordination numbers are also indicated. Filled triangles: 1'; asterisks: ri. 
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C. The Case of Model Ni, ,Nb, ,  

Here the system sizes for modelling y(r) and F(Q)  were different: for the former systems 
of 4096, whereas for the latter systems of 2596 particles were used. The CJ parameter 
corresponded to an assumed 1 YO of experimental uncertainity, averaged over the three 
independent model F(Q)’s in Q space, and over the three model partial pcf‘s in r space. 
Minimum values of closest approaches between particles, Aij, were applied during 
these series of calculations, as well. The values of ANiNi = ANiNb = 2.2 8, and 
ANbNb = 2.4 8, were kept constant throughout all the computations. The correct model 
number density, e, = 0.071 A - 3  meant a packing fraction, y~ = 0.841, and this ex- 
tremely high value caused difficulties in  moving atoms around. For this reason a 
preliminary hard sphere Monte Carlo simulation of 1 million accepted moves, start- 
ing from a lattice with randomly distributed sites, was carried out for generating an 
appropriate initial configuration for the Q space modelling. Starting from this hard 
sphere configuration 500000 accepted moves were completed in each run, modelling 
the three F(Q) .  For the r space calculations, where three model partial pcf‘s, gij (r) ,  
were used as input, the final configuration of Ref. 8 served as initial configuration. 
(This explains the use of a larger system in r space.) In  this series 60000 accepted 
moves were completed at each eo. 

Figure 5 contains the x 2  - eo curve for the case where F(Q)’s were modelled. (x2.s 
are averages over the three data sets). Just as in the model a-Ge case, the true 
microscopic number density of scattering centres is estimated correctly within about 
1 % uncertainity. 

Figure 5 contains a similar curve for the calculations in r space, as well. Again, 
the behaviour of the system resembles very much to what was observed in the case 
of model a-Ge. If higher densities were used than the correct value (0.071 k3) then 
the quality of RMC fits deteriorated (x2’s  increased). On the other hand, if lower 
values for eo were applied then in the interval of 0.071 A - 3  3 eo 3 0.065 k the x 2  

0 _ - ~  + -+~ -.-, ~- f i_- , ~~ , - ., ~ .~ ~ ~~. 0 

0.065 0.066 0067 0068 0069 007 0.071 0.072 0073 0074 0075 
Number denslty (k’) 

Figure5 Minimum xZ’s as a function of the number density of scattering centres for the model of 
>imorphous Nih2Nb,,. The modelling was carried out in Q space (open triangles), ;LS well as in  I’ space 
(filled squares), using y(r). Note the rather dilferent behaviour of the two curvcs. 
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did not change significantly. This means that by means of modelling g(r)  it is not 
possible to estimate the correct number density unambigously. (Larger intervals 
have not been tested: probably somewhat lower densities would also work.) 

5. DISCUSSION 

I t  was demonstrated that if information ( S ( Q ) ,  F ( Q )  or G(r)) ,  which inherently con- 
tains the microscopic number density, had been used for RMC modelling then the 
best fit (minimum value of x2) was obtained when the correct value of Qo had been 
applied. This statement is shown to be correct strictly for the case of atomic systems 
of low (model liquid Ga and amorphous Ge), as well as for high (model Ni,,Nb,,) 
packing fractions that have been investigated during this study. On the basis of the 
diversity of the models, however, it is suggested that Reverse Monte Carlo modelling 
is applicable for finding the appropriate number density of atomic disordered sys- 
tems, provided that the proper structural information is applied. (For molecular 
systems further, more complicated investigations are needed.) 

On the other hand, if g(r)  was used then RMC could fit the data equally well when 
lower number densities had been applied than the correct value of eo. Higher 
number densities, however, led immediately to worse agreement (considerably higher 
x2’s).  This can be interpreted as that g(r)  can impose only an upper limit for the 
number density, which is its correct value. The lower limit is more uncertain in this 
case. 

Admittedly, the application of the procedure can be quite cumbersome, especially 
if no good estimate of Qo is present at the beginning. (Note that one can always get 
some estimate from g(r )  peak positions, so that the process described is to be used as 
a refinement.) For this reason, it cannot be expected that the determination of the 
microscopic density of scattering centres would be the easiest via this way in each 
case. It is thought that applying RMC for this purpose could be important particu- 
larly for thin films. 

It is extremely important to notice that the procedure described above can work 
perfectly only if no other corrections are needed to be applied to the data than that 
of the density. (That is to say, ‘perfect’ experimental data is assumed, the only 
incorrect feature can be the number density). This, is however, a reasonable assump- 
tion for the data sets investigated in this work, as they had been corrected before for 
the usual experimental errors. 
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